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INTRODUCTION

A situation which sometimes arises is that

in which a time series y(t), t = 0,1,... is to be

modelled as a function of another time series x(t),

t - 0,1i,... (or more generally as a function of k series

xl(t),...,xk(t); t - 0,1,...). It is often the case

that for any time t, y(t) will depend not only on x(t),

but also on x(t - 1), x(t - 2),...,x(t - r) for some in-

teger r > 0, and sometimes on the complete past history

of x(t). When all of the series are second order sta-

tionary and a large number of observations is available,

the powerful methods of spectral analysis may be employ-

ed to estimate various types of linear models. On the

other hand, when relatively few observations are avail-

able and the series involved may be nonstationary, at

least to the extent of havinp trending means, these

methods may not be appropriate, and yet it may be desir-

able to have some sort of frequency decomposition of the

series. (For instance, it may be of interest to model

trends and stationary parts of the series separately.)

I



The purpose nf this study is to investigate

some or the properties of a method whereby y(t) is

modelled not directly as a linear function of x(t),

x(t - i),...,x(t - r), but rather as a linear function

of some of the principal components of x(t),x(t - 1),

- r). Chapter I, formulated in terms of a set

of random variables y,xl,..,xp, investigates the co-

variance structure among these variables which will

yield the result that the first m < p principal com-

ponents of ,xp provide a better predictor of y

than does any subset x ,o

In chapter II, principal component processes

of x(t),x(t - l),...,x(t - n) are defined and their pro-

perties noted. It is shown that when x(t) is one of the

usual types of second order stationary processes, the

* principal component processes effect a partial frequency

decomposition of x(t).

In chapter III, it is shcwn that for certain

processes containing deterministic components, certain

of the principal component processes tend to filter out

these deterministic components.
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An example of the behavior of the principal

component processes of an artificially generated process

is shown in the appendix together with the principal

components of an autoregressive pracess, some of the

transfer functions corresponding to the eigenvectors

of a moving average procass, and the first two principal

component processes derived from a series representing

quarterly total U.S. personal income.

L
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CHAPTER I

REGRESSION ON PRIHCIPAL COMPONENTS

Let X be the p component random vector

with covariance matrix E. It will be assumed that EX - 00

since the mean vector does not enter into the following

i discussion. There exists an orthogonal linear transforma-

t ion

Z - OIX

such that the covariance matrix of Z.

E(ZZ') A' .

where k, .. 0 A are the roots (eigenvalues) of the
4 - -p

characteristic equation ji - xIj - O and * p

j with the eigenvector corresponding to AJ. The rth

component of Z, Zr = 4r'X is called the rth principal

I component of X and has maximum variance of all normalized

(or' 1 - 1) linear combinations uncorrelated with

Zl...ZrIe In particular Z I the first principal

component has maximum variance of any normalized linear

14
I
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combination. ;IAoreover,

I E(Z )2 E k t trr 7 E(xi) 2  (1.0)
i;j l i i-I i

Principal components have found application

especially in exploratory studies where the number p

of variables under consideration may be large. It may

happen that a few of the principal components explain

most of the variation (as shown by (1.0)) of the ori-

ginal p variables. Another criterion often applied to

the use of principal components is that they should have

some sort of "reasonable" interpretation in their own

right.

When tLe variables xl,...,x are to be used as
P

possible explanatory variables in a linear model, the

use of principal components gives the additional advan-

tage that the Z 's are mutually uncorrelated. A discuss-

ion of the use of principal components in regression

analysis is given in [ 8 ] along with some examples deal-

ing with economic modelling.

The vectors *i,..., form a basis for the p

dimensional Euclidean space Hp If *Jr...,*p is any

other orthonormal basis for R, it can be shown

[10 p. 4001 that for any k - p,
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)k p k 2E({ Z x f Z 0 E( Z Ix I U !)
i11 i v-i V iv -. 3 i val V iv

1~ii1~I(1.1)
where i and I or

that the k components ZI,....,Zk give a better approxi-

mation in the sense of expected squared error to xl,..,xp

than do the k coefficients of any other orthogonal basis.
p

Moreover, when X is scaled so that E E(x1
2 ) a 1

then,

k k

I- i,, log 11 0- o g o f, (1.2)

where i  E(U 2). Equality holds in (1.2) only when
k k
E a o, for every 0 < k < p. (1.1) and (1.2)

show that for any fixed k < p, the first k principal

components carry at least as much of the information

contained in the set xl,...,x of variables as any k

linear combinations, including any subset x ,..,x k.

i
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When xr ... , a:-e -o ; n.-.tde-ed as Coss~bie explana-
P

tory variabies in a linear rnlc for another variable.

say, y, then it Is of Interest to be able t.: characterize

when the prinelpa! components '1 ' ... , k provide more in-

'formation relevant to :i than some other linear combina-

tions Ul,...,Uk.

Let y, X' = (xl,. .,x p ) be given random variable

such that Ey - E(xi) 0 0, 1-1,...,p; EXX' - E, EyX' - 12

2 u £21.As before let 1 > and ,...p
-- [E12 = 21- -" - p

be the eigenvalues and corresponding orthonormalized

eigenvectors of £. Let e i denote the vector 0

0
1 ith row

0

and 3 be the regression vector of y on X (i.e. the vec-

tor minimizing the expression E(y - X'B) 2.) Suppose now

that y is to be predicted by a linear combination of

k < p random variables which are themselves linear combin-

ations of x1 ,...,xp. One possibility is to choose some

subset xi l...,Xi , while another is to choose the first

Ii

1 k

kc principal components 1 ,*?



Let Z X where ,s k $ . and

Le z (k)' (k)

let W ijk)'x, where E (e ,...ej

Let y7 Z a denote the predictor of y based on Z,

i:"i 2

where a is the vector minimizing E(y - Z'a)

a k;
--" lakJ

and let yw c be the preci;iur of y tased on W,

where c is the vector minimizing E(y - W'c) 2. Then

SYZ a X , while Ya X E') '-k) ,.

Definition: Let u be a vector in Rp and define the

" norm iluil by {lull 2  (u.u), whyre (u,v) v u 'v.

Lemma (1.1): E(y - y E(y - y iff 11 - *I!

< 11$ -Y~11

-- t
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Proof: -~ v ay- ')

2l 2
P r : E(y- = - ' -= { - )

1 J 2 2 1 2i r2S' . . . . S. E(-y )
- E~y - ') + ! - ';'IVI from which the ]emma

~follows.

Theorem 1.1: E(y - -

kk
i k1(" 1 1 ,

1~ k-

- E i ij )E21 < '12( - 
- !k)E2 1 , where

i- i I

u 0 ....... ... .. 0..... ~...o0

0 ... a 0 .. 0 ... a 0 ... 0

0................................... 0

and where a hi is the .Jkth element of Sk'l where

• I I
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Proof: - IV ( - - ) =  (6,S) - 2(8,0)

+ 21,0) ("8 l~~s(,'t)

1(()-)W-- a r 12 a (k) 12,(k)a. But,

a E([EZZ')] E(Zy)
[E(o, k )' XX4 (k) )3- 1E(W )

, = [ ,c ( k ) ' Z O ( k ] -l W k ' F 2

0 1' -1( £ € i ... ¢ k ) 2 1

1 . 0 -1

k - ) Ak)'

so that, ( A1 E

ii
12,~ ~ W (('^- k)-

= 12 (k) A- 1 (k ) ' zo(k ) A- I1mt(k )' r2 1

12 = (k)A- l(k)' 21 .

I_
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Hence, H1 - k) 12L - A k)
-- 12 21 I 2

k k

12 ( 1 - E12( E i i ) 2 1

E Eo 1 2 1

122Similarly, I11 - 8S2 2(8, ) + (TT).

(,Y) a cEE , where c [E(WW,)]'E(Wy)

E (k) XX,E(k)) E(E(k)= EE WEEE xy)

-- (k)' E(k) I k)

= [ ]E E E k 2 1

-e

*el . i E(k) 1

•T .... e E -E

* 1 21

Ths *,) =k (k)'

k 21 .
}e

k ~ '

Thus, (BY) '12e (I , ) '

7' F 2 (k)S 1 (k) '2 Y
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S(k),kI (kE(kk'
E 1 E 13 k - k 1SkiEE)r

12 E k kk 21 12E  k 21"
%? = 2E-I2 1 IE(k)Sk 1E(k)'

Hence -E E E12 -21 k 21

- 1 2 [ - k]E21,

and the theorem follows from lemma 1.).

In practice if x6...,x p are highly inter-

kl

correlated, then it might be expected that I

would more closely approximate E-1 then would Zk& If at

the same time, y is essentially equally correlated with

all or many of the xj's, then it would seem likely that

* the inequality would hold. In particular, this situation

* might arise when xl,...,Xp are elements of a time series

x(t), x(t - l),...,x(t - p + 1) and y - y(t).

As an example, suppose x(t) is a first order

autoregressive process with x(t) - .9x(t - 1) - Z(t)

(a white noise process). Then the covariance matrix E

of x(t), x(t - 1), x(t - 2) can be taken as
* [ 1.0 .9.811]j = [.9 1.0 .9 , with eigenvalues XI - 2.74,.81 .9 1.0

X2 .19, X3 * .07 and eigenvectors

I
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0.5901 0 8071

.571 -2 
-. 417j

1 [5.232 -4.687 :02Q7
rm -4.687 9.431 -4 687 I.Letting k *1

- .027 -4.687 5.23?2

3.(117 .121 .1171

0r 10 .121 .125 .121 ,and

.117 .121 .117

0= I 7 0 0 .-Letting E12  (1 .99 .98),

1
-i i)E 21  .i

- . 71 .11 . 7

!. I



CHAFTER 1I

STOCHASTIC PROCESSES AND REPRESENTATIONS

The type of stochastic process x(t) to be con-

sidered will be a family of random variables with index

set T, where unless otherwise stated T will denote a

countable set of the real line, so that x(t) is a dis-

crete process. The random variables x(t) may be real

j or complex valued, but will always be assumed to satisfy

the condition Elx(t)12< - for all t c T. The mean value

function of x(t) will be denoted by u(t), and unless

otherwise stated it will be assumed that m(t) - 0. The

covariance function will be denoted by r(st)

* E{x(s) x-t,} there the bar denotes complex conjugate.

Of particular importance is the case where x(t) is a

* " second order stationary process. In that case the covari-

ance function has the form

E{x(s) x(s-t)} r(t

and r(t) has the spectral representation

1A4

I

I
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r(t) f e rilF~w),

where F(w), the spectral distribution function of x(t),

[ is real valued, nondecreasing, bounded, and can be

chosen so that F(--) - 0, F(+-) - r(O), and F(M) is

I : continuous to the right. If P(w) is absolutely con-

tinuous then fNO) - F'(w) is the spectral density func-

tion of x(t). In addition, if x(t) is second order

SI stationary, it has the spectral representation

x(t) e ] e d (W),

where (w) is a process of orthogonal increments which can

I be chosen so that E O(N) - 0, EIE(w)12 - F(w), and

Eld&(w)I 2 - dF(w). ( (w) is called the spectral process

I associated with x(t).) From this spectral representation

the process x(t) can be thought of as being built up of

mutually orthogonal elementary harmonic oscillations

I eitw d&(w).

Let x(t) be a second order stationary process and

I consider a process y(t) formed from x(t) by a linear

transformation of the type

,!r
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n
y t) Z b x(t - tv). (2.1)

Val

Then

n.. Y(t) Z bV  ei(t-tV)wd X(W,)
val -G

*0 n -it W

f eit (E bv e )d ().
- ~ Val x

Thus, y(t) is a second order stationary process with ele-

mentary harmonic oscillations h(w) d &x(w), where h(w)

fn -itVW
- E b e . The covariance function r (t) of y(t)

*Vol V y

. has the representation

rY(t f e t  jh(w)12 d FX(W).

If x(t) has spectral density function f (w) then y(t)

has spectral density function f (w) - th(w)1 2 f (w).
y x

Thus for a given frequency w, fx (w) is multiplied by

2
the amountlh(w) 2 to give f (w). This may have the

y
effect of greatly repressing certain frequencies while

enhancing others. For this reason the linear operation

( 2.1) may be thought of as a filter applied to the process
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x(t). h(W)l
2 is called the transfer function 

of the

[ filter and h(w) the rain of the filter.

Karhunen - LoIrve Representnns

Theorem [see 7 p. 4781

Let x(t) be a stochastic process continuous in quadra-

tic mean and defined for t c T a closed interval. Then

x(t) has an orthogonal representation of the form

x(t) - E 1n(t) Zn,

where *n (t) is an elgenfunction of the covariance func-

tion R(t,t') - E{x(t) x(t')}. That is

f T  R(t,t') * n(t') dt' - X n ton (t ) ,

and

IT m(t) 7nt) dt = 6 mn The random variables Z n

are given by
Zn~1' TXt)(t) dr,

ntt

and the Zn s have the property that E(Zm n n 6mn

When x(t) is a finite discrete process, T can be taken

as the set T (1,?,,...,N}, and R(t,t') becomes the
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N X N r.atrix

R(2, ) .... R(2,N)
(N)

S(N,l) .... R(N,N)

with eigenvalues A1 
>  2-" A1., and corresponding

orthonormal set of eigenvectors *l,...,N' where

*k(1

k  . The representation for x(t) thenIk a
becomes

N
X(t) n r *n(t) Zn.

whereI NZ- E x(t)-i(t).
E' n tali

I Thus in this case Zn is the nth principal component of

j Ithe random variables x(1),...,x(N).

S::rincipal Component Processes

I Let x(t), t - 1,2,... be a discrete stochastic

process.

I Deinition: x(t) will be called covariance stationary if

E{(x(t) - v(t)) (x - ) - r(t - n), where

I
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u(t) - E x(t). (u(t) is not necessarily constant.) For

any fixed positive integer n let R(n ) be the covariance

matrix

r(O) r(1) .... r(n)
(n) r(-) r). . . . r(n-1)

R * ,

r(-n) r(-n+l) . . r(O)

I (n) > A (n) > A (n) see > Xn(n) be the eigenvalues of

0 -1 -2 - -n

and (n) $Goes#n) be the corresponding set

of orthonormalized eigenvectors.

D.finition: The processes Z (n) (t); j = 0,1,...,n where

(n) n (n)z --((t) - E (v) x(t-v)

will be called the principal nnmponent processes of x(t).

From this definition and the usual properties of

principal components it follows that:

(1) Zo(t) is that linear combination

n
1!0 aiO x(t-l) with maximum variance sub-

ject to the restriction that n i

ZI(n)(t) is the linear combination
n

Sa, 1 x(t-l) with maximum variance
i-
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rub~ect to the restrictions that n a 2 1

i-1 'i1

n
and E atoa- 0, and so forth for

i-1

(iI) tU M1 (n)(0) ij

(iII) x(t) has the repreeentation,

n (n)
x(t) - z.

This representation differs in generil from

the Karhunen-Lobve representation or the

spectral representation in that the index

t is contained In the random element. Thus

the representation is in terms of conistants

and random processes rather than random

variables and deterministic functions of t.

(iv) r(o) - . IV( )l VI .

An interpretation of these processes can be seen

more readily in the case that x(t) is a second order/1..
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stationary process. Let x(t) be a ditcrete stationary

process with spectral process x(w), and assume more-

over, that x(t) has a spectral density function f (w).

Then

z ( )( )- n (r)

j(n)(t) -*j (v) x(t-v), j - Os...,n

is a linear operation on x(t) and hence, it follows

that,

(v) Z,(n)(t) is a stationary process,

(vI) z (n)(t) is built up of elementary harmonic

oscillations of the form ei tw F V(n)()dx (w)

where " V (k),

k-O

(n)
(vii) Z (t) has spectral density function

fz (n)(w) - 191(r)(w)l 2 x (w).

From (iii), (vi), (vii) it follows that the spectral

representations for x(t) and r(O) may be written in the

I'
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forms

x(t) e d~y kw)

,, fl e1 (To(O) g0( ) d~ (w) +...

+ OT6T p'n(w) dEx(w) ),

and

r(O) - f f (x) dw
-H X

v -n 0
1 n-* (1(2 Ig(w)I2  x(w) +..

which gives a decomposition for the elementary harmonic

oscillations eitw d x(w) and the spectral density func-

tion fx(w). From the properties (i) and (ii) it follows

that

1[ 2 T1

I go (wl fx(,) dw a / Ih(w)I f (w) dw,
-11 - x

for any h(w) satisfying

n n 2
h(w) E E bv e - l) r b V

I-
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Thus, the filter function Rw)passes the most import-

ant portion of the spectrumviof x(t), whileg1 W 0.*n)

pass increasingly smaller portions of f Cu(). The exact

properties of the~se filter functions are determined by

the filter coefficients

(k) k 0,...,n ,-,..,

which in turn are determined by the covariance structure

of the process x(t). These properties are further illus-

trated by the following special case.

x(t) A Periodic Process

Let x(t) be a stationary process such that

x(t + N) a x(t) for some integer N. This process can be

thought Of Z3s containing only a finite number of elemen-

tary harmon~ic oscillations and, hence, has the represen-

tat ion

N-Ii flt
X(t) r e - X- (2.2)

J-0

where the

1 N-1l ~

Uj N Ek e x(k), j ,...,n-1 are



mutually orthogonal random variables. (2.2) can be put In

the more usual form by letting

di N

Ir - 2R1, j >

Then (2.2) becomes

N-i 1S tx(t) - E e x j n< jin
J=O

From the definition of x(t), E x(t) i ( N-))

- E x(t) xrt + J) or r(n- J) (-j). Hence, the

covariance matrix

(r(O) r(l) ... M-i)
r(-l) r(O)... r(N-2)

(N-i)

S " Rr(--2)...r(O)J

r(O) r(l) ... r(CI-i)
r fr(N-l) r(O).. r(N-2)

r(i) r(2),... r(O)

is a circular matrix. As such it has eigenvalues given by

N-1 k
X ! D k r(k), where Pj in an Nth root of

L k=O

I unity. The corresponding eigenvector is given by

I
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1
0

~Putting pi =  gives

e

(n) 1

12n(N-)J
ea 1

The principal component process Zj(n(t) then has the form

i2fljv

Z (t) a£e T  x(t-v)

11 1i2RJv N-i 12Hkl(t-v)
v 0 k=O

N E e N . Xkk-O k-O

Ikv 12k
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2T1k
1 N-1 R6t ie t t

k - N- . e )(k -PT-e
kcUO k uj ,

so that Z (t) consists only of the elementary harmonic

oscillation at frequency + . This may also be seen

from the filter function corresponding to Z (t), which is

1 N-I i U • " i v w

Sgj(w) p " t eO

1 N-1 i('+ - w)v

N V'0

S I BBut x(t) only contains oscillations at frequencies

211k
Wk T , ko,...,N-1 and gj(wk) =N 6jk.

The representation (iii) in this case yields

I ~(t -1 I 1 e tX

E 7N e x
~J 0

N-1 it
X e N xj

which is identical with the spectral representation (2.2).

On the other hand, since x(t + N) - x(t), the process

x(t) consists of only a finite number of distinct random

variablea. Thus, considering only the distinct x(t)'5, the
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representation C2.2 ) Is identical with th14e Karhunen rep-

resentation with Z= Xj•

Since an arbitrary process may be approx.mated by

a periodic one by allowing the period to tend to infinity,

it seems reasonable to inquire whether some of the pro-

perties exhibited by the principal component processes for

the periodic case might not hold in some limiting sense

for arbitrary processes. For instance, the form of the

eigenvalues cf the circular matrix

211J1(N4-1) N-1 Ic-
E (e ) r(k)

k-0

might sup:mest that the set f. (n)}n of eigenvalues of

the covarlance matrix of a statkonary process might in

some way approzimate its spectral density function.

These ideas are made more precise using the theory

of Toeplitz forms developed by Grenander and Szeg6 [ 5 ].

Definition: Let f(x) be a real valued function defined on

-fl, 1] such that I jf(x)i dx exists, and let c ( n ) be
-n

the matrix (c. v ,) v, =O,. ..,n, where

1 H -ikx
ck - I e f(x)dx.i-f
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Then c ()will be cal.led the Toeplitz matrix of order n

associatel with the function f(x). Similarly, if F(x) is

monotone nondecreasing in [-11011, the Toeplitz matrix

associated with F(x) i. (n . (C,,) where

C k U!*fe- dF(x).

| -1

The quadritic form X X* is called the Toeplit form

associated with f(x) ur Fu(x) where X Si(xxly...fi.x) is

an arbitrary complex vector.

Proposition: Let x(t) be a second order stationary sto-

i chastic process and Rn) the covariance matrix

h () .. . . r()J

(n)

i Then R ( Is the Toeplit matrix asociated with the spec-

tral distribution 2n1 F (w) (or spectral density function

2n1 t(w) if it exists).

Proof: Bcchier's theorem for the discrete case gives

n

r(n) p f eoe a dF.R( ) so th at

1n 1111F(w]
r(-n) e X

5 •I|t
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Definition: For each n consider the two sets of real

n)' (n'

numbers a (n) and {bv ( , where there exists a
V =0 V0

constant K independent of n and v, such that laV n)j < K,

b() I < K. (a (n)} anr (b (n)), n- are said to be

equally distributed in [-KK] if

n EF(a (n)) - F(bu (n))

n . V -0,
n- =0 n+l1

where F(t) is an arbitrary continuous function or. [-K,K).

Theorem: Let f(x) be a real valued function such that

l If(x)Idx < -, and let m and M denote the essential
-nI

lower and upper bounds (assumed finite) respectively of

f(x). If F(X) is any continuous function on [m,M), then

lim F(X0 (n) +...+ F(A (n))lmn 1 M

n - n:  n + l F(f(x))dx,

(2.4)

where X0 (n) > . > An(n ) are the eigenvalues of the
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matrix (n)
matrix C associated with f(x). For proof see [ 5 ].

By considering the integral on the right hand side of

(2.4) as a limit of approximating sums, the theorem shows

that the sets {0 (n)}n and f(fl- 2(V+1L) )n are
V v-O n+2 VO

equally distributed as n * -, and by proper choice of

F(A) it follows that

urm ,0 ( n ) - M. (25)

neft 0

These'results show that when x(t) is a second order

stationary process with spectral density function f,(61),

the eigenvalues 0 (n)#,. ,* n (n) of R(n ) tend to approxi-

mate 2H fx(w) at an equally spaced set of points in

f[-,nl], and in particular,

lir Ao(n) v max 211 f X()~-11< W<11x

Pertaining to the asymptotic behavior of eigenvOctors, it

is shown in [ 5 1 that a Toepiitz matrix can be approxi-

mated according to a certain norm by a hermitian matrix

(with known eigenvalues and eigenvectors) in such a way

that thi distributions of eigenvalues of the two matrices

are asymptotically equal. The mode of convergence, how-

ever, does not seem to be strong enough to guarantee the

convergence of a transfer function given by an eigenvector
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of a Toep itz matrix to the sane limit as ,hat or the

transfer function given by the corresponding eigenvector

of the approximating matrix. In particular, it is shown

that an arbitrary Toeplitz matrix can be approximated by

a matrix with eigenvectors given by (2.3). This might

suggest that the principal component processes might, in

general, tend to give a frequency decomposition as in the

case of the periodic process. That this is not always the

case can be neen by considering a process x(t) of the

opposite extreme.

x(t) A Discrete White Noise Process

Let x() be such that E x(t) A 0, and E(x(t) x-t-)

.02 at, . The spectral density function of this process

Is

02
f- -H <Al<E

and the covariance matrix

c2a 02
0 a2

with eigenvalues A0(n) .n (n )  2 and corresponding

elgenvectors &0(n)*...$n (n ) which may be taken as



*,The transfer functicn

-= i J HH
given by 0 ( n ) is hence,

IF'(n) (),)2 . le-ikXI? - 1,

so that each transfer function passes each frequency with

equal weighting. Thus, while the eigenvectors in this

A case are not uniquely determined ( and hence neither are

the principal component processes) for at least one choice

of eigenvectors the principal component processes do not

provide a frrquency decomposition of the original process.

It will be seen 1i what follows thai. for many

ctner common prouefs3Cs - e~t3in o the r.asociated principal

component procesczs tnd tLo give nearnngful frequency de-

compositions.

x(t) A FirzL Order Mevnr Averae Process

Let Z(t) be a WhitG noise process satisfying

k' Z(t) - 0, E{Z(t),WT.r)'} t and let

xtt) - Z(t) + oZ(t-1), w-.e-e C < l < 1.
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Then

P 2 *

2. 0) (2.6)

=: The spectral density tunction fxl( or x(t) is

----. !rx(u) "e1T-I 1 + * + pe-iw1

-- , ( + 2 2poosw ). (2.6)

Prom the equation of "mechanical quadrature" (see [ 5 1)

7r (x) dx- E O(r
-H VW-N+L

which holds when 4(x) is a trigonometric polynomial whose

degree does not exceed 2N-lj, it can be shown that the

eigenvalues of R are given by

n(n) p2 Vl
AV - (1 + 0 ) + 21co n+22)

with corresponding eigenvectors,

4.
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Dn

2 Where

n
nn)

()k = + sin -n 2 • v-0 ,...,n.
Vk '

Whenp>0,X 0 (n) > 1 (n) > > X (n) and x0(n)--2--(1+p)?

a r "f(0 ma f,(w), If p < 0, the subscripts on the

X(n)'s musL be reversed in order to have the proper order-

ing. After relabeling

i ( (n+l)n n- 20 (n ) .(l + 2) + 2p-os- (1 -

" fx(±R) - max f X(w).

For the case n - 1, P > 0,

A*(1) (1+ ) + 2cOS /3 > (1) 2 2
+1Pofl3>A (1+P + 2Pcos'fl

Z S11

-0 0 1) (i)a

111 14

St) x(t) + p x(t-1),0

-- I

i1
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1 1

Z )t) 2 x(t) 2

(The transfer functions corresponding ro Z0 ((t) and

ZI( 1 )(t) are

Ig ( I + e - 1 + cosw and

0

2 1 eiw2
Ig z (1t)l I -r2" - 1 - cosw as shown

in figures 1 and 2

r a r

Figure 1 Figure 2

Similarly for any finite n,the eigenvector corresponding

to the largest eigenvalue yields a principal component

process whose transfer function passes th largest portion

of fx(w).

Proposition: lim f ( ) = 0 for any fixed w#0, p>O
_ , n. ZO~n
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n __(k+l)fl

Proof: E Jr(sin. M
7 n kwO 

-k

2 i.(k+1)fl ik~)
n n+ nf -1kw

2i'~2 1=O -nA ee je

k0

-I -i- n+ n inl w 7

-e Z e
k-O

__~ )(2ne -

JTn+? e n+7

+-W (n+1)

e -1
=n+2 + w

e -

* N2~(w) *For w-w0 O

D1 () and W e - I while 1NL (01I < 2 and

Inwl!.2. Thus as ni * (n *w 0 and f zo()
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2
Ig ()l f (u) 0. Hence, the transfer funct!cn
z0(n) x: Z0

Ig ()) acts like a 6 function, 6(w), as n A AA- Z (n
0

similar argument shows that when p < 0,

2Ig (n)(w)l ajg()'J) 6(1=! - II) as n -.
z
0

x(t) A First Order Autoregressive Process

Let Z(t) be a white noise process as above and

x(t) - ox(t-1) - Zt). (2.8)

(2.8) may also be written

(1 - B)x(t) - ZCt),

where B represents the "backwards lag operator"

(i.e. Bx(t) - x(t-l).), or

x(t) - = Z(t). (2.9)

If x(t) is to be a stationary process then ll < 1 in

which case (2.9) may formally be written as

x(t) - 0 V Bv  Z(t), or-0
i x(t) - £ o" 7(t-v). (2.10)

ii



38

U.ln .) 1 can be seen to have the form

2 n100 . . . o01 .. .n-I

k n) u2 (2.11)

n n-l 1

2 2vwhere a U g x(t) has spectral density function

f( 1---. - 12= (1+ o - 2pcosw) - I

2U I -ei 1 2 -

(2.12)

which assumes its maximum at w o 0 when P > 0. While

explicit expressions for the eigenvalues and eigenvec-

tors of R~n ) are unfeasible, sonething can be said about

the asymptotic properties of the largest elgenvalue and

corresponding eigenvector.

Definition: A matrix A w (aij) is called positive if

aij > 0 for all iJ.

Then when o > 0, R(n ) is a positive matrix. This will

be assumed to be the case in what follows.

Theorem (Perron): [see 2 p. 278) If A is a positive

matrix, there is a unique eigenvalue X (A) which has

greatest absolute value, is positive, and simple. Its

associated eigenvector can be taken to be positive

(have all positive elements).
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Theorem(2 0 ):[2  v Akc exists and Il an
rM1T]k

eigenvector of' A associated with )X(A) for anyv positive

vector c. v Is unique up to a scalar multiple depend-

ing on the choice of c, but otherwise, Independent of

the choice of c.

Lema (. 1: Let 400 be the positive eiger-tr:1
vector of R~)corresponding Go the largest eigenvalue.

Then 0 < 00 l . .O li 0 +1n

_--7-

if n is odd.
00

" if even

iOn 00 i i

Proof: Only the case n even will be treated explicitly.

Positiveness can be assumed as a result of Perron's

theorem. From theorem (2.0), if c is chosen to be the

vector of 11s, then for any r

II



10

OW(r)

where ()Is the jth row sum of (R(n))r orS(r

n (n) (r1()

b, h IV S where b.V is the element In the

jth rowvt column of Rn) The equality ofS

and S r)is obvious from the form of ~nd .

r a 1,

S(1) - 1 + + 2 n S(1) + 2p + o2

n-1+ <.,,, S (1n 1 + 2n + 2P2 +...+ 2o#

>*>Sn (1) -S (1). For r =2,

(2) (12l 02(1) nlS + 2 S + + S (1) while

(2) PS + * 1 + P(1) O** n-l1), so5

+(n1 n)- (l)5  > 0, and by the same type of argument

it can be shown that So (2) < 1 S <* Sn (2)

i1 II
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> Sn(2) by using only the elements of R (n ) and the

ordering of the S5 (1)'s. Hence, by induction, the

same ordering holds for each power r and the lemma

follows by taking the limit.

(n)
Lemma 2,2: Under the hypothesis of lemma 1, 40 n

- max Oj( n ) * 0 as n * -.

Proof:

1 2 2  n *(n)
0.... * n-l 00n! €o(n)

,n n-I n " (n) 4o(n) Y a2 0 07 •..*0o...66 2 (n)

n n-1 (n)

010

(n) 4 (n)
a(n) (n)

n(n) (n) where

*o(n)I o 00n



4,2

I.(n (ni) (

0(n) (n) =,

:000 
00

L"(n)(n
Oon 2 0n(n) 2

(n) n (n)

-1 *(n) n (n)
01 2

22

But Since # (ns1 an elgenvector a ()*Ao0 .

to* 70 A0'n then sinceA0

12
X(0) (1-0) 0 ao010



~~ 1+ p
1-P + 20 + 2o- +... Irn the

expression for a n  it follows from lemma 1 that the
n

coefficient of each positive power of p is < 2. Hence

a(n)2
in order for n to approach 1 + 2p + 2p2 +... itn

(n)

follows that for each fixed k, 0 -k l1 On the

(n)#0 n

2
n (n)2

other hand since E 1(. * 1, then (n) 0 as
V.0 Ov O n

n *

Theorem 2.1: Let 0(n) be as in the preceeding lemmas,
()n (n) e-ivw, 0(n),1

and let g0(n)() V (E 0  e Then Ig )(w)2

6(w) as n -*-

Proof: Igo(n)(,)12 _ n ikwProf Ig r c k ei , where c k  - k
k=-n

n (n) (n) (n )2

O Ov 'Ov-k so that in particular 6 0 * O(
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. (n) n (n (nal. For k < ,-tZ" :'¢
, -0 0, jk 0.1 Jk

(n)2  (n) + 0 (n) (n) (n))

00 Ok-i Ok Ok 00

m (n)4

+ 0OK+ (k+ 0 000n 0 n -0 n

2 22r
+ $0 n ( 0 "~ 0 0 ~-) + .. + (0 0 n-i 0 n-1-00 n-k-l%

+4On (On -On-k) But 00 On 01 0 r-i,

0 n 1 0 n implies €k Ok 00

+ - 0 0 O00

+ On n - On-k) Ok(Ok 00 - k

(00k -00 etc., so that the above sum becomes

n 2 n k-i 2 n/2 2
E0 " j OJ OJ-k 00. + E ( 2OJ-O ¢ O  J-koJO O. J-k €J-€Jk

S + S > O. Since 0 (n) - 0, then for fixed k,

S 1 S1 k(f n))' 0 as n . Let r be the greatest In-

S .I
m t
- i
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teger such that rk n. f.-nd let'a, - min(rk+l,2 ),
-- ?

= min(rk+2, fl),..., ak_ = min((r+l)k-1, ). Then S

n/22

n E ( 0 0 ) < 2,l k ( 0 0 k - 0
J=k O 0.J-k - (rOk - 0 ) + (002k -

+ (00 rk- $0 (r-l)k ) 2 + (00 n " 0 rk )2 +(00 k+l - 0 )2

2 )2.
0 0 (r-I)k+l + (0o n 0 a

2

- 2 +.+-0r-I2
+ 0 0 2k-i 00 k-1 ) 2 *0* (00 Wk- 00 rkk-.)

+ ($0 n - 00 akl )2 Now, each term of (0Ok - 00

+ ( o 2k - 0Ok) + 0+ (0 rk - 00 (r-l)k) + (00 n "'0 rk:

= (0 n " $00) is non-negative so that the sum cU squares
2

of these terms is less than or equal to the square of the

sim. The same is true for each of the other k-i sums so

that S2 I k($o n )00)2 * 0 as n e.. But this implies

7

that for each fixed k, Ck = C~kl as ne. . From this



I

It follows that for any -. sitive integer 'I, and any

E > 0, there exists an interer " such that n > M

__ , (n), E.%
2I +l for k 0,1,...,N. Then

N n kw N N
Nck(n) e - E e I < E-ICk - i < E.

k--,l k N k N
~N

Thus, if the partial sums SN(w) = N ei kw of the

ikw
trigonometrical series I e converge to a general-! k -

ized function g(w), the transfer functionIgo()1 2

n n)ikw

r kn) e must converge to the same function.
ku-n

It is shown, however, in Lighthill [6, p. 67] that the

Ca kw
trigonometrical series Z e converges to the gen-

eralized function g(j) - 2H E (w - 2kM), (a train of

delta functions). When w is restricted to the interval

[-T,1], g(,) is simply 2Th6(w), and it then follows that

SIgo (n)(M )12 n*-+n) M-- - --9 2fl(4)

!
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Now suppose p ( 0. Let the covariance

matrices and spectral density functions now be denoted

(n)-
by R and f'w). Since fx() - (c + f), itx x x

follows from the theory of Toeplitz forms that the

(n)-(n
eigenvalues of R are the same as those of R

nn_____ (n)- e-ivwhr

Theorem 2.2: Let g n)-(w) - e . where0 UOV

(n)- (n')-
(n) is the vth element of 0 , the eigenvector

corresponding to the largest eigenvalue A 0(n ) of R

Then gO(n) (,) * 0 as n * for any fixed w such that

Proof: By direct multiplication, it may be verified

(n)- V (n)
that 0v u(1 so that

(n-n V (n) -ivw n (n) ei(WIH)V*0
o (W)) £ (-1) oO e 0 eW

whenever (w t H) 0 0.
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These same results can be obtained to show

the behavior of the first principal component process

of certain higher order moving average and autoregress-

ive processes. For instance, consider the second order

moving average process x(t) -Z(t) + a Z(t - 1)

+ a Z(t - 2), where Z(t) is a white noise process,
2

0 < aI < 1, 0 < a2 
< 1. x(t) has spectral density

function fr(L) - (l + aI  + a 2 2+ 2(al + CaL2 )cosw

+ 2a2cos2w) which attains its maximum at w * 0. The

covariance matrix in this case is

22 0
Cl + 12  cl +a l 2 a . . .. . . .0

2 22
R(n) *a 2  1, +,a 2  a+l"+ 2  al+c1t 2  82

2

0 . . . . . . . . . a +a a i+a
2 2 12

The results or Perron's theorem and Its corollary can

t



be shown (Frobenius' theorem J1']) to hold for an irre-

ducible matrix A - (a ), where A is called irreducible

if ai1 > 0 and if whenever a 0 for p # q, there ex-

ists some set of indices 1, ... , such that the indices

l p~ i . . .• Pi r q are all different and api 0 0,.. .,a k#O

-- # 0. It can easily be verified that R(n ) is irre-

ducible, for example, al n+l = 0 but a 13 0, a35 # 0,
13ana 3 5O

n n+1

Lemma 2.1 holds by exactly the same proof as in

the autoregressive case. To show that lemma 2.2 holds,

nonsider R 
(n ) (n)

Y 0 .y0 ........ 0
BY 0 .9.........* 0 FI

0 - 8 C( 8 y 0..........00 B 8y 0 ... *...... *2

0 ..... 0 c0 n .... a

;0 
j

I
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(n)(,, )

ann

a n(n)

(n)

al€

an nl

(n) 22

where a
00

a(n) (n

l.... + +

2 2 2

nn

an n + [ + + y +

2"(n) n n

a ( n + 26 -1 + 2y 9-2

2 
n

22



ImlI.

2 2 5

and a 1 + a1 + C 2 , a +ala 2 l Y aI. Since

co is an eigenvector, a0 (n)= aI ( .. a
mn

X 0 (n) and as n X 0 ( , f (0) - a + 26 + 2y.

The expression for a (n) thus shows that as n -
n

n /sn - 1 and o 2O 1. Working backwards then,

it follows that for any fixed k, n /n e 1 as n *
r-m

and the lemma follows. Theorem 2.1 then holds exactly

as before. If a1 
< 0, a2 > 0, then a. + a1a2 < 0 and

the spectral density function now denoted by f;(W)

assumes its maximum at X - ±R1. f( ) - fx(w + H) so

~(n )-
that the eigenvalues of R are the same as those of

R(n) except with different ordering, where R n )- is

the covariance matrix in the case with aI , 0. R(n )-

can be derived from R(n) by changing the algebraic sign

of every other element and, hence, direct multiplication

(n)-
will show that .0 n) where 0 (n)

On
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- n

(-I) so that theorem 2.2 holds.

M~ixed Autoregr, ssive Moving Average Process

Let x(t) be -a stationary process of the form

X(t) - Px(t-1) -Z(t) + xLZ(t-1). (2.13)

This can be formally written as,

(1 - OB)x(t) - (1 + OB)Z(t)

(1 +ciB)
x(t) - *F(1 Z(t), where B denotes (2.1~4)

the backwards lag operator. Prom (2.1J4) if 101 < 1, it

follows that x(t) can be expressed as the Infinite mov-

Ing averaF'e nrocess

X (t) * t (p + oi)Z(t-1) t P(P + Ct)Z(t-2) +.

from which it follows that

! 52

r(n) 1 +n-ia

. p 2 + Pa1 + n)]

so that,

-- ixdAtoerssv ovn veaeIrcs
iI

Le x~) bea satioaryprocss f th fo
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6Y y y n-i
6 Y Py 0 y . . . Y yY 6 Y Dy D . n-2 y

(n)
R

y. ..... Y

If P,M > 0, R(n ) is a positive matrix and if

S0(1) Sn (1) denote its row sums, then

S() >> Sri') . (1) S(2)

S (1) + S(1) ( 1 )
0 + PyS 2  +...+ YS n.(

+ n-16Sn (I ) SI(21 a Ys (1) + () S2 (1)
n +h(S)

n
+ S ... n-2, (i). y < since it is al-g n

ways true that Ir(t)I < r(O) and y is real. Hence, it

folowstha S(2) •S(2)

follows that S > S , and in a similar way Sn(2)

()(2) (2)
(2) > S ) 0 etc., which implies that

lemma 2.1 holds. The spectral density function of x(t)

-+ a( iW 2• 1 + a2 + 2acosw.

I, 1 + e "!
x,
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?or fixed n, the row nur S (,
n

- (5 + y Y Y) 2y+.

2 L + ?2ci + a + --(a + O(CL 2 + ))

n
+ ((C + 2 + Pa + I)) + + 2D (a + Y(. 2 + Oct + 1)))

1 0T  [I+ 2o a- It +2o. o

3.n

- 2 [(1 )2 + 2o(1 + a) 2 +... 202 (1 + C,)2

n n

+ 2 I ( 2 + a + 1) + 20 a]. As n m this becomes

2 2 (1 + p)
7 (1 + a),(2 ) 2 (1+0t) ( - )1-- 1-0 1-

- - o)* - 21fT (0). The same argument as in the auto-__j x

regressive case then shows that lemma 2.2 and hence

theorem 2.1 also hold in this case.

If both p < 0 and a < 0 then 6 > 0, while y < 0;

f'(w) - f (n + w) has its maximum at w - ±; (n)-

x x

s (n)-

wee (n)- . t ' %(n

nwhere 0 - (-l), 0V and henceJoOv Ood!
i theorem 2.2 holds.

I



CHAPTER III

PROCFSSES WITH NONCONSTANT MEANS

Let y(t) be a real valued second order sta-

tionary process with mean zero, and let x(t) - m(t)

+ y(t), where m(t) is a deterministic but dnknown func-

tion. In this chapter the covariances considered will

be expected sample covariances where the sample covari-

ances are computed as if m(t) were constant. Thus, each

covariance will consist of a part due to m(t) and a part

due to y(t) as follows.

Let x(l), x(2),..., x(n + k) be a sample from

the process x(t) and define

( n r = I(r) (r) r+ 7(.,k

n r x(t - r),)
t-k+l (3.1)

The sample covariance between x(t) and x(t - T) can

then be written as

1 n+k (0)s(T) - 77 Z (x~t) - 7(°)(x(t - T) - 7(T))

t=k+l

55



n mt + y(t)- -

+ y(t- -- t)

1 n+k
0E M(t)m~t T ) - ()

t-k+l

1 n+k
+ E M~trn(t t yT)-

t-k+l

1n+k
+ E~ M ~~(t - rY~) - (~

t k+ 1

I n+k (o)
+ n E r(t)r(t - T) - 7( m ± 0') Y(

tuk+1

Sinc y(t) is atwhinaise proes then xmtey eainbe

1 n-*k
F ~t E m(t)m(t -F F

t-k+1 T

(3-3)
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X(t) -A Linear TIrend Pus Wh te 40jse-

Let x(t) =m(t) + Z(t), where Z(t) is a

wihite noise process, EZ.(t) -0, E(Z(t) Z(t -0

2* z 6 and m(t) a + bt where a and b are constents.

Then !n(t) i'm(t - T) (a + bt)(a + b(t - Tr))

-(a + bt)((a - bT) + bt) aaa~ + (ab + a b)t + b t2

n+k b(+1. E m(t) rn(t - ) a aTba + aT) E t
Stnk+l n tnk+1

+ b2  E~ t2, while FIFT
St-k+1

n+k n+k
z (a + bt) Z (a + b(t - ))

twk+l tink+)

(a+ f+k bn+k
(a + - E )(a + - z t)

ntnk+l t-k+1

a +b(a + a )n+k b2 n+k 2
T n +- tk+l n 2 tuk+1

2 n+k 2 1nk 2 2
By (3.3) ES ~ E. t -1 Fk 2l 2

T mkl nt-k+1 Z TO*
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r

Hence, the expected covariance matrix ER
(n ) has the

foz-m

I 02+a 
a _ • 

• • 
*"

ER where

* • . * . . Ca a2+ J
a the first term above. This is a positive circular,

matrix, and hence for a given n, ER ( n ) has eigenvalues

n

V n )  a2 + a + (rr a, where r. is a root ofJul

~n*l
x - 1 * 0. When r. = 1, the corresponding eigenvalue

is (n 2(n) 2.
is Xo~n) = a2 + (n + 1)a, while if r # 1, X n  - a

:0 V "",,

The eigenvector corresponding to n is ( n

(n) 2

whose transfer function is I () 2
:0

2
=,* n 2 ikwL i n -iW k

-e-  But E (e k-0
k=O k-O

I
4

!
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[ - ei(n+l) 1
-I = i e 0 for any fixed w O.

On the other hand since m(t) is non-periodic (a linear

trend in this came) it can be considered as having the

Fourier representation

M(t) = eitw dv(w),
-IT

where du(w) - 0 for w 0 0. As a result, the (sample)

power spectrum of x(t) consists of the spectrum of y(t)

plus a jump at w - 0 due to re(t). The form of the

above transfer function shows that the first principal

component tends to remove this zero frequency or trend

portion of x(t)

x(t) A Periodic Function Plus White Noise

Consider the process x(t) - cos(it) + Z(t),

where Z(t) is a white noise process. For convenience,

it will be assumed that both n (the sample size) and

N + 1 (the order of the covariance matrix) are always

taken to be divisible by four. Then,

1 - n fl7k-(0 E _ cos(- -) of0
t-k+) 2

!
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I Em(t)m(t) - (0 + I + ) - 1/2,
nn

SEm(t)m(t - 2) - (0 - 1 - 0 .) * -1/2

E EM(t)m(t - 3) = 0, etc.

Hence,, the expected covariance matrix is of the form

[ cZ2 +1/2 0 -1/2 0 ... 1/2 0 -1/2 0'
2 112 0 /

* 2+1/2 0 ..................... 1/
z

E R( n )

10 ........ .0. z2+1/2

This, again, is a circular matrix with eigenvalues

*v " 2 + 1/2) + 1.12 ' (-l)jr 2j where rv is

a root of xN+ - 1 - 0. The expression for X, assumes

its maximum value when (r.)2J = (-l)J or when rv - ±i.

i 211v

Since r can be expressed in the form rV M e

N+1v - 0,1,...,N. X)(max.) is attained for v - and

'V. l3ing the same notation as in Chapter iI,

two orthogcnal eigenvectors corresponding to the double

root X (max.) are given by



61

iin

Il

e-7 ei

~~Let *(N) be an- arbitrary linear combination N

a0.$N)+ N) .Th transfer function corresponding
(Nto () 4

N N 11 b11k eikw12I.'w -a -A-e 0 +--e 7

f_ iN i(.~ N1

wIee(N) (&)- e ~ .

[ ""with N for any value of w different from 11/2 or 311/2.

Fort b ,r,..., cos( )t l cos( c)t so that any princi-

pal component formed from an eigenvector corresponding

to )(max.) will tend to filter out the deterministic

~function m(t).
i

i +

ITi3
Ni rw ki -~

iN ( )

whr Ee+ Z

i+ kO4I +

wihNfrayvleo dfeetfo./ rP2

Foi 9,91csIt csI-t ota n rni



APPENDIX

Figures 1 and 2 of chapter II showed the

transfer functions corresponding to the two eigenvectors

of the 2 X 2, (n - 1) covariance matrix of the moving

average process x(t) - Z(t) + .9Z(t - 1). Figures 3

and 4 show how these transfer functiois change as n

increases. Figure 3 shows the transfer functions corre-

sponding to the eigenvectore #0 *20 *4 when n a 4,

while figure 4 shows the transfer functions corresponding

to 00 *30 #6 for n a 6.

62
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Figure 1
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I Figure 5 shows an example of the behavior

of an autoregressive process x(t) + .9x(t - 1) -Z(t)

together with its first and fifth principal component

processes for the case n - 4l. Th,: series Z(t) consists

of a series of random numbers taken from the Rand table

of Normal Random Deviates. From this series, the series

y(t) was constructed. The principal component processes

- were constructed by numerically determining the eigen-

vectors of the theoretical cojvariance matrix of y(t)

and applying the appropriate filters to y(t). The first

principal component process can be seen to consist pri-

marily of oscillations with period two, while the fifth

principal component process contains oscillations of much

lower frequencies.

I
I_ ! _
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Fiure 6 shows a sample of the process x(t)

t + 5cos!t + y(t), where y(t) + .9y(t - I) Z(t),

Z(t) a white noise process. Also shown are the first

and second principal component processes for n - 18.

The process "x(t) was constructed by taking as Z(t), two

hundred numbers from the Rand Table of Random Normal

Deviates, eonstructing y(t), and combining y(t) with

1and 5cos t. The data was keypunched and the prin-

cipal components determined (from the sample cozariance

matrix) using the BMDOIM principal component program.

This process was selected as an example since it might

resemble an unseasonally adjusted economic series.

The first principal component contains the

linear trend plus some low frequency oscillations, while

the second principal component seems to consist almost

entirely of oscillations with period four corresponding

to the cosine term. The third principal component (not

shown) also consists primarily of oscillations with

period four as would be expected from the results of

chapter III, while the fourth (also not shown) component

contains oscillations of period two from the autoregress-

ive process.

i9

I
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Figure 7 shows a series x(t) * log e (the

total U.S. Personal Income) , a quarterly, seasonally

adjusted series from "Survey of Current Business",

from first quarter 1958 through fourth quarter 1968.

Shown with x(t) is its first principal component process

multiplied by a scale factor so that it fits the ori-

ginal series. These principal components were also com-

puted using the BMDOIM program. In this example, n was

thbaen to be equal to six. Figure 8 shows the second

principal component on a greatly magnified scale.

I -
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